13,782 research outputs found

    Economic Analysis in the Pacific Northwest Land Resources Project: Theoretical Considerations and Preliminary Results

    Get PDF
    The Pacific Northwest Land Resources Inventory Demonstration Project i s an a ttempt to combine a whole spectrum of heterogeneous geographic, institutional and applications elements in a synergistic approach to the evaluation of remote sensing techniques. This diversity is the prime motivating factor behind a theoretical investigation of alternative economic analysis procedures. For a multitude of reasons--simplicity, ease of understanding, financial constraints and credibility, among others--cost-effectiveness emerges as the most practical tool for conducting such evaluation determinatIons in the Pacific Northwest. Preliminary findings in two water resource application areas suggest, in conformity with most published studies, that Lands at-aided data collection methods enjoy substantial cost advantages over alternative techniques. The pntential for sensitivity analysis based on cost/accuracy tradeoffs is considered on a theoretical plane in the absence of current accuracy figures concerning the Landsat-aided approach

    Soliton Stability in Systems of Two Real Scalar Fields

    Get PDF
    In this paper we consider a class of systems of two coupled real scalar fields in bidimensional spacetime, with the main motivation of studying classical or linear stability of soliton solutions. Firstly, we present the class of systems and comment on the topological profile of soliton solutions one can find from the first-order equations that solve the equations of motion. After doing that, we follow the standard approach to classical stability to introduce the main steps one needs to obtain the spectra of Schr\"odinger operators that appear in this class of systems. We consider a specific system, from which we illustrate the general calculations and present some analytical results. We also consider another system, more general, and we present another investigation, that introduces new results and offers a comparison with the former investigations.Comment: 16 pages, Revtex, 3 f igure

    Nonlinear modes in the harmonic PT-symmetric potential

    Full text link
    We study the families of nonlinear modes described by the nonlinear Schr\"odinger equation with the PT-symmetric harmonic potential x2−2iαxx^2-2i\alpha x. The found nonlinear modes display a number of interesting features. In particular, we have observed that the modes, bifurcating from the different eigenstates of the underlying linear problem, can actually belong to the same family of nonlinear modes. We also show that by proper adjustment of the coefficient α\alpha it is possible to enhance stability of small-amplitude and strongly nonlinear modes comparing to the well-studied case of the real harmonic potential.Comment: 7 pages, 2 figures; accepted to Phys. Rev.

    Structure-dependent ferroelectricity of niobium clusters (NbN, N=2-52)

    Full text link
    The ground-state structures and ferroelectric properties of NbN (N=2-52) have been investigated by a combination of density-functional theory (DFT) in the generalized gradient approximation (GGA) and an unbiased global search with the guided simulated annealing. It is found that the electric dipole moment (EDM) exists in the most of NbN and varies considerably with their sizes. And the larger NbN (N>=25) prefer the amorphous packing. Most importantly, our numerical EDM values of NbN (N>=38) exhibit an extraordinary even-odd oscillation, which is well consistent with the experimental observation, showing a close relationship with the geometrical structures of NbN. Finally, an inverse coordination number (ICN) function is proposed to account for the structural relation of the EDM values, especially their even-odd oscillations starting from Nb38.Comment: 11 pages and 4 figure

    Welcher Weg? A trajectory representation of a quantum Young's diffraction experiment

    Get PDF
    The double slit problem is idealized by simplifying each slit by a point source. A composite reduced action for the two correlated point sources is developed. Contours of the reduced action, trajectories and loci of transit times are developed in the region near the two point sources. The trajectory through any point in Euclidian 3-space also passes simultaneously through both point sources.Comment: 12 pages LaTeX2e, 9 figures. Typos corrected. Author's final submission. A companion paper to "Interference, reduced action, and trajectories", quant-ph/0605120. Keywords: interference, Young's experiment, entanglement, nonlocality, trajectory representation, determinis

    Force-extension relation of cross-linked anisotropic polymer networks

    Get PDF
    Cross-linked polymer networks with orientational order constitute a wide class of soft materials and are relevant to biological systems (e.g., F-actin bundles). We analytically study the nonlinear force-extension relation of an array of parallel-aligned, strongly stretched semiflexible polymers with random cross-links. In the strong stretching limit, the effect of the cross-links is purely entropic, independent of the bending rigidity of the chains. Cross-links enhance the differential stretching stiffness of the bundle. For hard cross-links, the cross-link contribution to the force-extension relation scales inversely proportional to the force. Its dependence on the cross-link density, close to the gelation transition, is the same as that of the shear modulus. The qualitative behavior is captured by a toy model of two chains with a single cross-link in the middle.Comment: 7 pages, 4 figure

    A Classical Treatment of Island Cosmology

    Full text link
    Computing the perturbation spectrum in the recently proposed Island Cosmology remains an open problem. In this paper we present a classical computation of the perturbations generated in this scenario by assuming that the NEC-violating field behaves as a classical phantom field. Using an exactly-solvable potential, we show that the model generates a scale-invariant spectrum of scalar perturbations, as well as a scale-invariant spectrum of gravitational waves. The scalar perturbations can have sufficient amplitude to seed cosmological structure, while the gravitational waves have a vastly diminished amplitude.Comment: 8 pages, 1 figur

    Two-dimensional shear modulus of a Langmuir foam

    Full text link
    We deform a two-dimensional (2D) foam, created in a Langmuir monolayer, by applying a mechanical perturbation, and simultaneously image it by Brewster angle microscopy. We determine the foam stress tensor (through a determination of the 2D gas-liquid line tension, 2.35 ±\pm 0.4 pJ⋅\cdotm−1^{-1}) and the statistical strain tensor, by analyzing the images of the deformed structure. We deduce the 2D shear modulus of the foam, μ=38±3nN⋅m−1\mu= 38 \pm 3 \mathrm{nN}\cdot \mathrm{m}^{-1}. The foam effective rigidity is predicted to be 35±3nN⋅m−1 35 \pm 3 \mathrm {nN}\cdot \mathrm {m}^{- 1}, which agrees with the value 37.5±0.8nN⋅m−137.5 \pm 0.8 \mathrm {nN}\cdot \mathrm {m}^{-1} obtained in an independent mechanical measurement.Comment: submitted May 12, 2003 ; resubmitted Sept 9, 200

    Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon

    Get PDF
    NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021

    Giant Magnetic Moments of Nitrogen Stabilized Mn Clusters and Their Relevance to Ferromagnetism in Mn Doped GaN

    Full text link
    Using first principles calculations based on density functional theory, we show that the stability and magnetic properties of small Mn clusters can be fundamentally altered by the presence of nitrogen. Not only are their binding energies substantially enhanced, but also the coupling between the magnetic moments at Mn sites remains ferromagnetic irrespective of their size or shape. In addition, these nitrogen stabilized Mn clusters carry giant magnetic moments ranging from 4 Bohr magnetons in MnN to 22 Bohr magnetons in Mn_5N. It is suggested that the giant magnetic moments of Mn_xN clusters may play a key role in the ferromagnetism of Mn doped GaN which exhibit a wide range (10K - 940K) of Curie temperatures
    • …
    corecore